

FS 2024/25

MSE-422 – Advanced Metallurgy

8-Structural Intermetallic Alloys

Christian Leinenbach

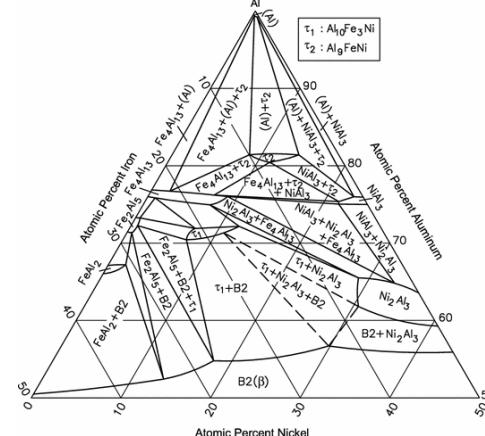
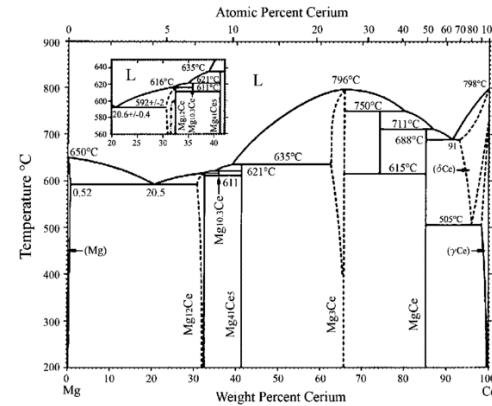
Criteria for the formation of solid solutions

The Hume-Rothery rules

■ H-R-rules for substitutional solid solutions

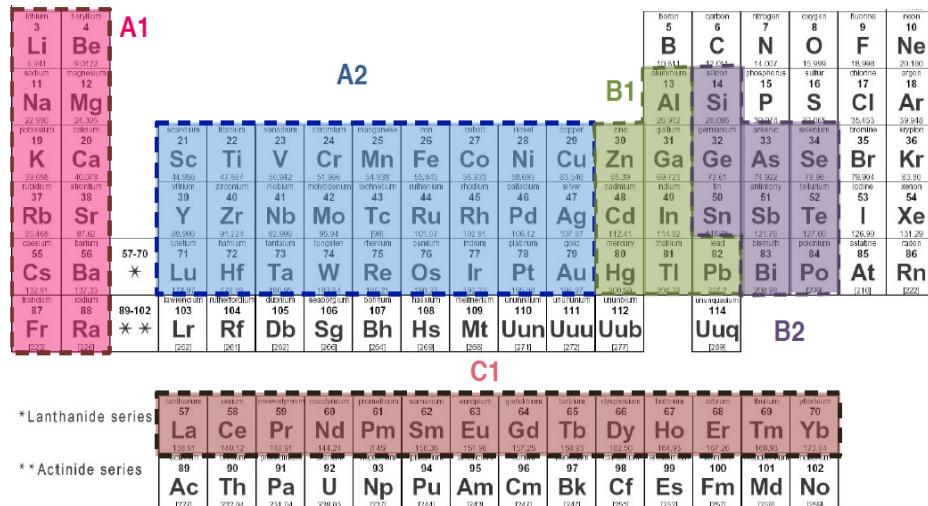
- 1) The atomic radius of the solute and solvent atoms must differ by no more than 15%
- 2) The crystal structures of solute and solvent must be similar
- 3) Complete solubility occurs when the solvent and solute have the same valency
- 4) The solute and solvent should have similar electronegativity

■ H-R-rules for interstitial solid solutions

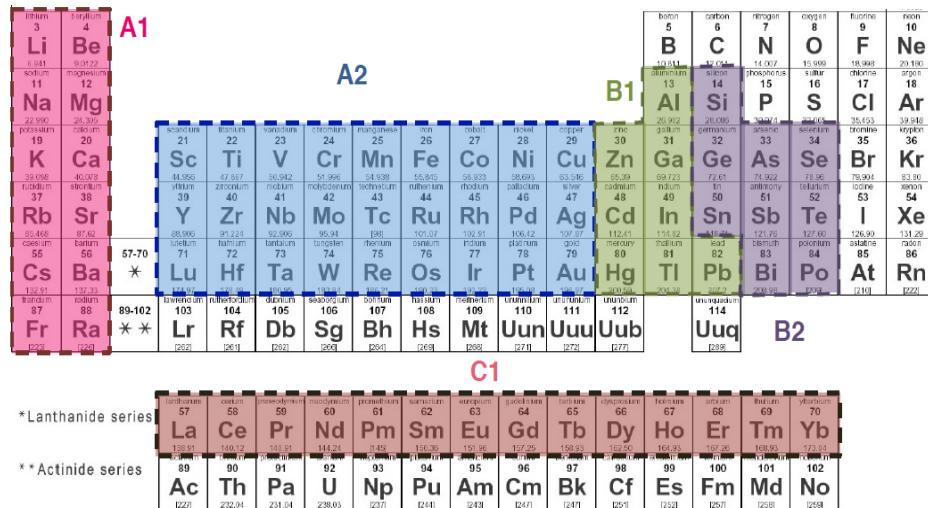


- 1) Solute atoms should have a smaller radius than 59% of the radius of solvent atoms
- 2) The solute and solvent should have similar electronegativity
- 3) Valency factor: two elements should have the same valence.

→ If these rules are not fulfilled, then intermetallic compounds will form

The table shows the periodic table with the following color-coding:
Metals: Blue
Metalloids: Orange
Nonmetals: Green
The first 88 elements are grouped under the following labels:
METALS: Li, Be, Na, Mg, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Cl, Ar, He.
METALLOIDS: B, Si, P, S, Se, As, Po, At, Rn.
NONMETALS: H, O, F, Ne, N, S, Cl, Ar, Ne.
The remaining elements are grouped under the following labels:
METALS: Rb, Sr, Y, Zr, Nb, Mo, Tc, Rh, Pd, Ag, Cd, In, Sn, Te, I, Po, At.
METALLOIDS: Cs, Ba, La-Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Uuq, Uup, Uuh, Uus.
NONMETALS: He, Ne, Ar, Kr, Xe, Rn, Uuo.
The lanthanide and actinide series are also highlighted with their respective labels.


Some basic facts about intermetallics

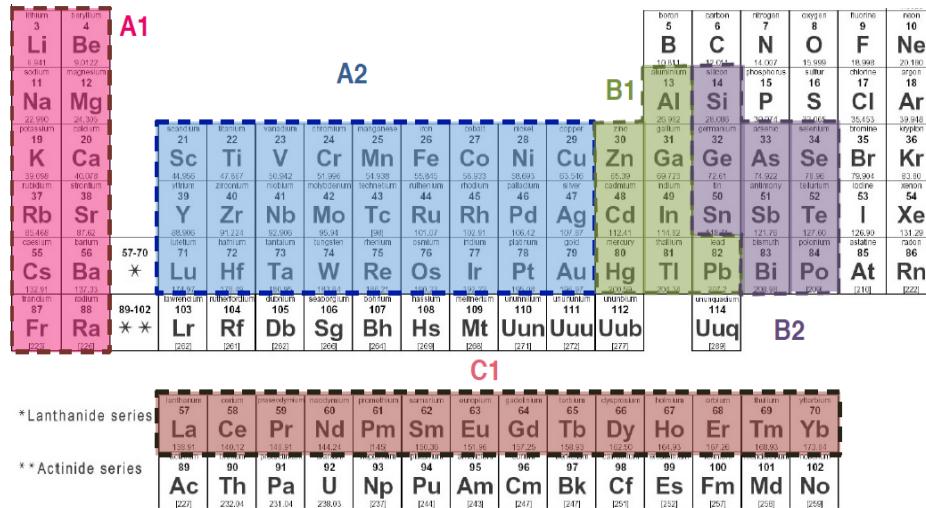
- Intermetallic compound (IMC), also called an intermetallic, or (ordered) intermetallic alloy
- Metallic alloys with ordered lattices formed between two or more metallic elements.
- Over 5000 binary IMCs exist, grouped by characteristics; most are not suitable for structural or functional applications.
- Formed by bonding between two or more metals in specific stoichiometric ratios (e.g., A_xB_y , $A_xB_yC_z$).
- IMC bonds are a mix of metallic, covalent, and ionic character.


Some basic facts about intermetallics

- Formation of intermetallics is to a large extent a matter of electronegativity, but size ratios do also play a role
- The type of IMC that is formed depends on the position of the elements involved in the PSE
 - The **electropositive metals** (typically with large radii), A1
 - The **transition metals** (with variably filled d-shells) A2
 - the elements of early s and p-shell filling** B1
 - the elements of late s and p-shell filling** (mostly with covalent component), B2, **the Lanthanides** (f-shell filling), C1.

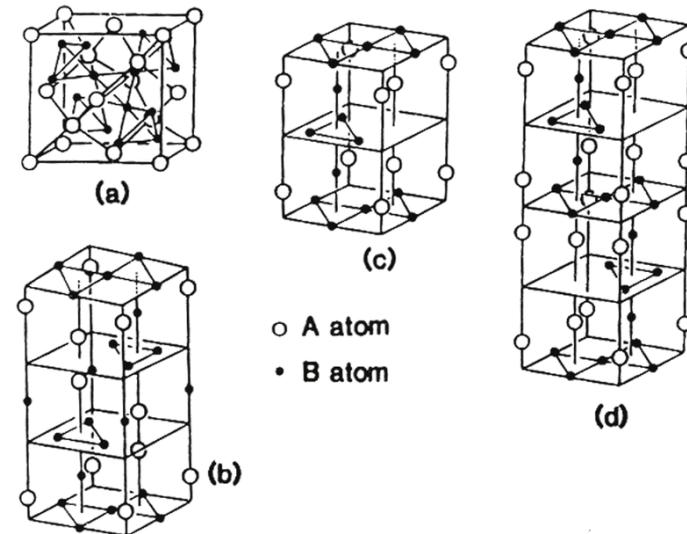
Classes of intermetallics

- A1-A1, A2-A2: Similar electronegativities form solid solutions or Laves phases (if radii differ by ~15-20%); large radius differences lead to immiscibility.
- B2-B2: Forms intermetallics with covalent bonding.
- A1-A2: Significant size difference favors Laves phases.
- A1-B1: Large size and electronegativity differences create Laves phases and cluster compounds.
- A1-B2: High electronegativity difference leads to Zintl phases (salt-like, not intermetallic).

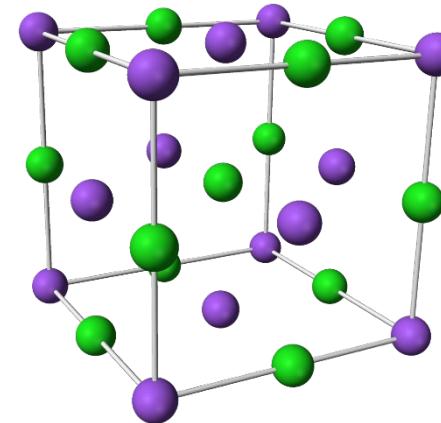


Classes of intermetallics

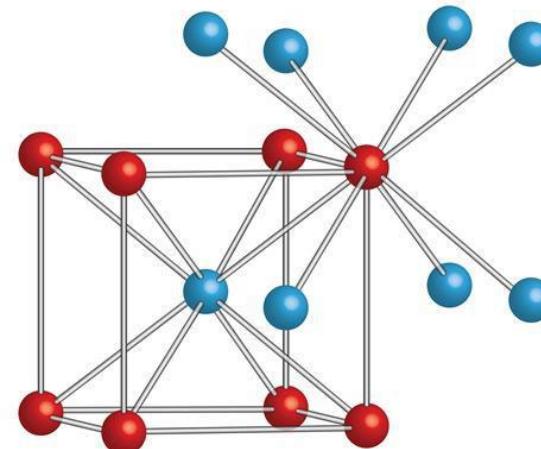
EPFL


- A2-B1: Valence electron concentration controls intermetallic structures (e.g., Hume-Rothery phases).
- A2-B2: Forms line compounds, often closed-packed with B2 in interstitial sites.
- B1-B2: Stoichiometric compounds with covalent bonding, following Grimm-Sommerfeld rule.

G-S rule: main group elements (N-k & N+k) behave similarly to group N elements
→ example: III-V compounds (GaAs, InP) behave like Si, Ge semiconductors.


The Laves phases

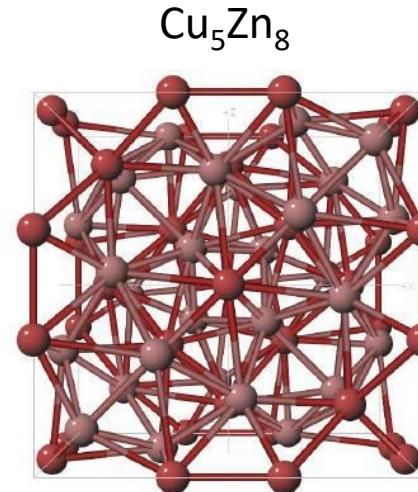
- Laves phases are the largest class of IMCs
- Composition ratio AB_2 (not all intermetallic phases with AB_2 -composition are Laves phases, however)
- Very high packing density of atoms, maximum volume filling of 71% with a ratio of $r_A/r_B = \sqrt{3}/2 = 1.225$ (actual range of variation: 1.05 to 1.68)
- Cubic or hexagonal lattice structure
- Predominantly metallic bonding
- Examples: Co_2Ti , Cr_2Nb , Cu_2Mg , Fe_2Mo , $MgZn_2$


The Zintl phases

- AB types with NaCl lattice or AB₂ types with CaF₂ lattice.
- They are the product of a reaction between a group 1 (alkali metal) or group 2 (alkaline earth) and any post-transition metal or metalloid
- Composition corresponds to the chemical valences of the elements; Besides metallic bonding strong ionic bonding forces
- No significant homogeneity ranges, because of fixed valencies
- Because of the line-shaped range in the phase diagram they are called line compounds
- Examples: Mg₂Si, Mg₂Pb, MgSe

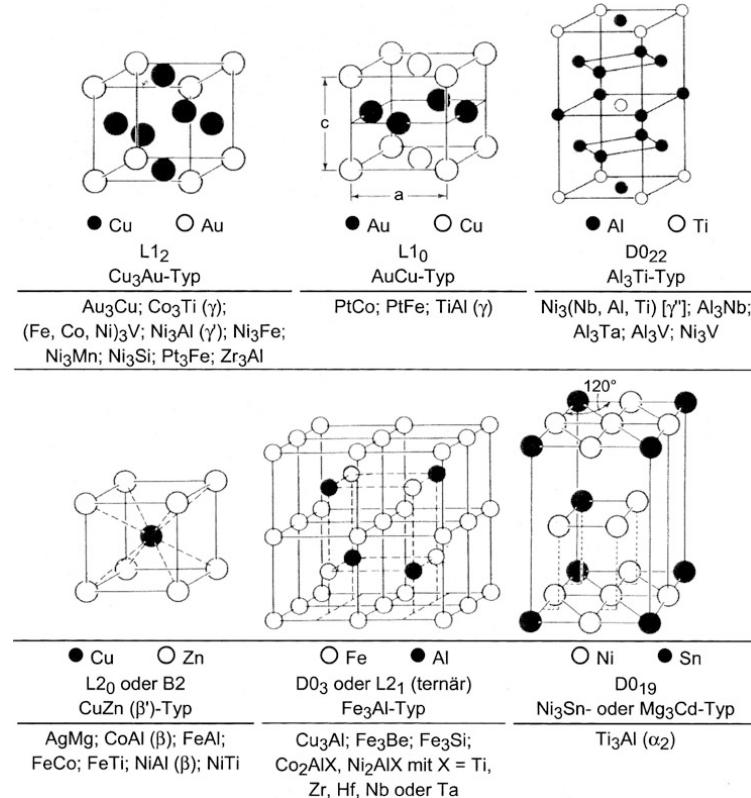
IMCs with CsCl structure

- AB-type IMCs with the CsCl structure are, after the Laves phases, the second largest class of IMCs
- While the ordered AB structures based on a bcc lattice are formed from a disordered solid solution, the CsCl-type IMCs solidify congruently from the melt
- The CsCl structure is typically formed by one element A to the left of group VIA, i.e. Cr, Mo, W and one element B to the right
- Primitive cubic lattice structure
- Predominantly ionic bonding
- Examples: CsCl, CuZn

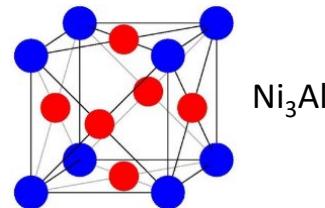


The Hume-Rothery phases

- H-R phases have a specific valence electron concentration e/a (e : number of valence electrons, a : number of atoms)
- Characteristic values: $e/a=3/2, 21/13, 7/4$
- Predominantly metallic bond character
- Mostly extended homogeneity range


Elements	e
Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt	0
Cu, Ag, Au	1
Be, Mg, Zn, Cd	2
Al, Ga, In	3
Si, Ge, Sn, Pb	4
P, As, Sb, Bi	5

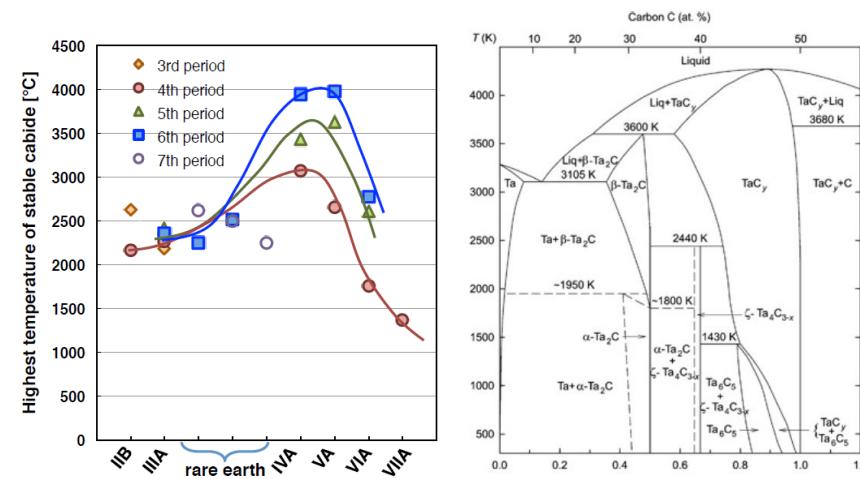
Example: $\text{Ni}_5\text{Zn}_{21}$ ($e=0+21\times 2=42$, $a=5+21=26$, $e/a=42/26=21/13$); Cu_5Zn_8


The ordered phases with superstructure

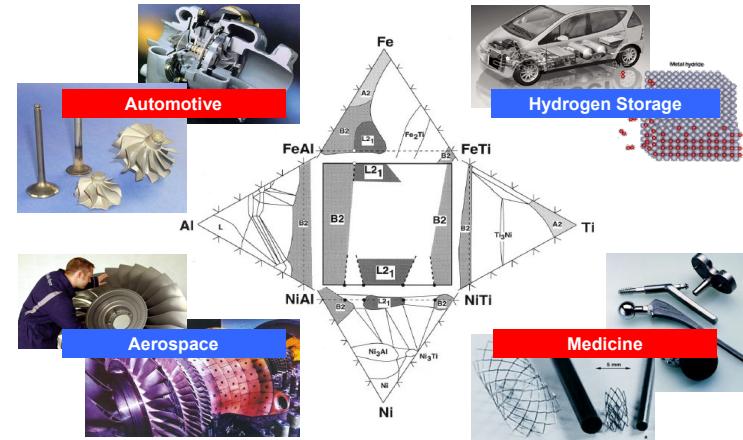
- Predominantly type AB or A₃B
- The atoms occupy fixed lattice sites, i.e. they are not statistically randomly distributed
- The superstructure or long-range order represents a lattice of one type of atom in the lattice of the other
- Usually wider homogeneity range
- Range of existence often limited up to the critical order temperature in the solid state (entropy effect)
- Example: CuZn, Ni₃Al, NiAl, FeAl

Closed packed phases

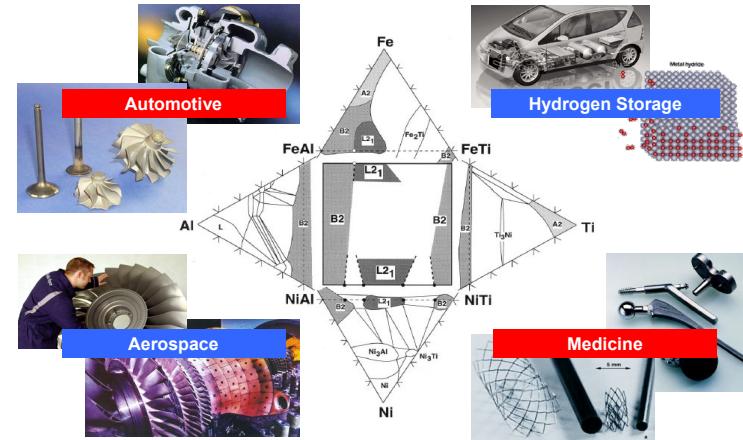
- Geometrically closed packed (GCP)
 - A_3B composition with atomic radius relation $r_A < r_B$
 - Ordered crystal structure (\rightarrow subgroup of the ordered phases)
 - Densest sphere packing related to the space filling
 - Usually extended homogeneity range
 - Examples: Ni_3Al , Ni_3Fe



- Topologically closed packed (TCP)
 - Densely packed lattice planes with intervening layers of larger atoms (combination of periodic and aperiodic structure)
 - Complex crystal structure, very large unit cells
 - Usually extended homogeneity range
 - Examples:
 - All Laves phases, e.g. Fe_2Mo , Co_2Ta , $MgZn_2$
 - σ -phase $(Fe,Ni,Co)_x(Cr,Mo,W)_y$ with $x \approx y$
 - μ -phase $((Fe,Co)_7(Mo,W)_6$


The Hägg phases

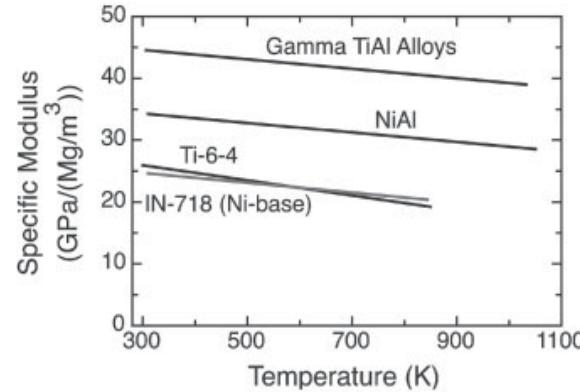
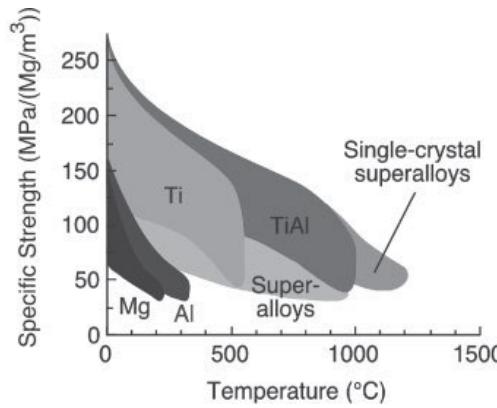
- Compounds of transition metal and non-metal with small covalent radius(H: 0.32 Å, B: 0.82 Å, C: 0.77 Å, N: 0.75 Å); thus: hydrides, borides, carbides, nitrides, partly also other compounds
- High non-metallic bonding fraction (covalent radii decisive); these phases have a strong ceramic character
- High temperature stability and often high melting point (e.g., TaC at approx. 4000 °C)
- Often high hardness
- Examples: Fe_3C , Cr_{23}C_6 , TiC , TaC , AlN , Cr_2N , TiH_2


Structural Intermetallic Alloys

- IMCs have strong bonds with covalent, ionic, and some metallic character
- High elastic moduli and Peierls stresses give IMCs inherently high strength
- Strong bonding leads to high melting points and low diffusion rates, enhancing HT strength
- Partial metallic bonding reduces brittleness compared to ceramics.
- IMCs have been of particular interest for HT applications, as a replacement or complement for Ni superalloys

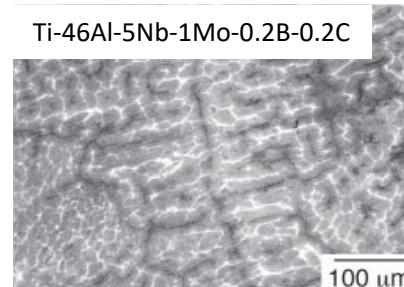
Structural Intermetallic Alloys

- Only a few IMCs are of technical relevance
 - Aluminides for HT structural applications ($TiAl/Ti_3Al$; $NiAl/Ni_3Al$; $FeAl/Fe_3Al$)
 - The shape memory alloy $NiTi \rightarrow$ not considered here
 - Functional IMCs for superconductors (e.g., Nb_3Sn), catalysts (e.g. Pt_3Ni , $PtCo$) or hydrogen storage (e.g. $TiFe$) \rightarrow not considered here
- Aluminides offer HT stability, good mechanical properties, and low density due to high aluminum content
- Despite ~ 50 years of research, commercial applications for these IMCs remain limited

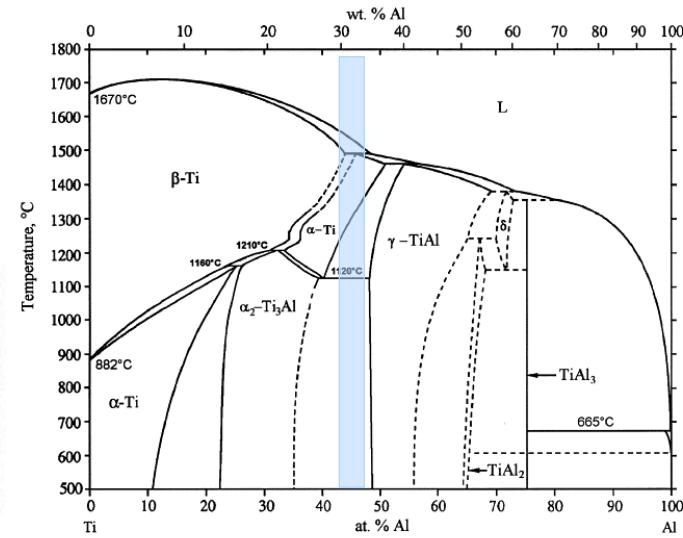




General disadvantages and challenges

- Creep strength in IMCs is often lower than in superalloys at similar temperatures
 - requires solid solution strengthening, particle strengthening, or biphasing
- Pronounced brittleness
 - Brittle fracture can occur up to ~ 0.5 TS with high notch sensitivity, especially under severe notches
 - Limited number of slip systems and high Peierls stress hinder plasticity, causing stress concentrations and cracking
 - Planar dislocation arrangements and dislocation pile-ups increase local stresses
 - Grain boundary weakness: low separation strength and impurity sensitivity (e.g., oxygen) can weaken grain boundaries
- Brittleness and low fracture toughness make fabrication, machining, and handling challenging, often with high scrap risk
- Some IMCs lack long-term oxidation resistance, requiring compatible coatings for durability


Titanium aluminides

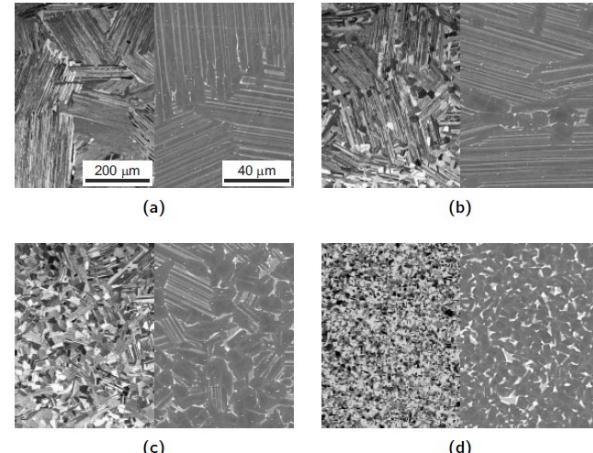
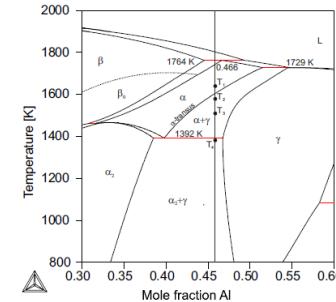
- Titanium Aluminides (γ -TiAl, α_2 -Ti₃Al) have been studied for >30 years for their low density, high specific strength, and specific modulus.
- Properties: low diffusivity and excellent oxidation resistance due to high Al content
- Applications: suitable for use up to 800°C, competing with Ni-based alloys


Titanium aluminides

- Engineering alloys usually have a composition $\text{Ti-(45-48Al)-(0.1-10)X}$ (at.%) with $X=\text{Cr, Nb, V, Ta, Mo, Zr, W, Si, C, and B}$
- Depending on composition and cooling rate
 - β -Ti solidifiers
 - hypo/hyper-peritectic with β -Ti or α -Ti as the primary phase
- Upon further cooling to RT transformation into a two-phase α_2/γ microstructure
- Efficient microstructure refinement: addition of B

/F. Appel et al., Gamma Titanium Aluminide Alloys, Wiley 2011/

IMC	lattice	T_{oc} [°C]	T_{m} [°C]	ρ [g/cm ³]	E [GPa]
Ti_3Al	$\text{D}0_{19}$ (hcp)	1250	---	4.2	145
TiAl	$\text{L}1_0$ (tetr.)	1460	1460	3.91	176

Titanium aluminides

Microstructures after heat treatment

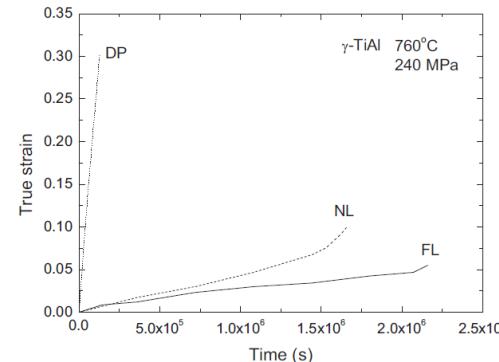
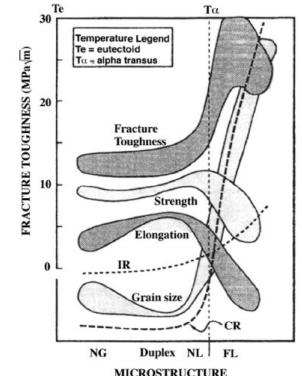
- TiAl alloys are not directly applied in the as-processed condition but are heat treated
- Thermal treatments lead to microstructures similar to those of Ti alloys
 - a) Lamellar (HT at T_1 , slow cooling)
 - b) Nearly lamellar (HT close to α transus at T_2)
 - c) Bimodal/duplex (increased amount of γ after HT at T_3)
 - d) Near- γ (HT below eutectoid temperature at T_4)

a) fully lamellar microstructure,
(b) nearly lamellar microstructure,
(c) a duplex microstructure and
(d) near γ plates.

Titanium aluminides

Strengthening mechanisms

- Solid solution strengthening
 - Alloying with modest levels (<3-5 at.% in total) of Cr, V, Cr, Mn, Mo, Ta, Nb, and Zr provides some potential for solid solution strengthening
- Dislocation strengthening
 - Low effectivity because of the inherent brittleness of Ti aluminides
- Grain boundary strengthening
 - Effect similar to Ti alloys with grain diameter or lamellae width as important parameter
 - Less effective at elevated T
- Particle strengthening
 - Nanometric borides, nitrides, oxides, and silicides may provide precipitation strengthening
 - Coarse precipitates seem to be harmful for ductility



Titanium aluminides

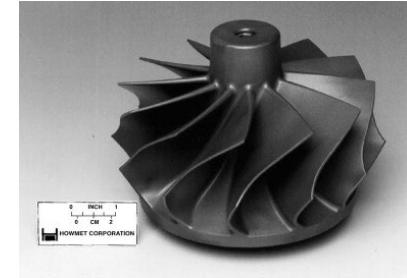
Mechanical properties

- The properties of modern TiAl alloys are depending on the phase fraction of the γ and the α_2 phase as well as on the microstructure (i.e. the thermal treatment)
- The high-T strength and creep resistance can be improved by increased amounts of α_2
- γ -TiAl exhibits a ductile-to-brittle transition at $\sim 830^\circ\text{C}$

Property	Ti-based alloys	Ti ₃ Al-based α_2 alloys	TiAl-based γ alloys	Superalloys
Density (g cm ⁻³)	4.5	4.1–4.7	3.7–3.9	8.3
RT modulus (GPa)	96–115	120–145	160–176	206
RT yield strength (MPa)	380–1115	700–990	400–630	250–1310 ^a
RT tensile strength (MPa)	480–1200	800–1140	450–700	620–1620 ^a
Highest temperature with high creep strength (°C)	600	750	1000	1090
Temperature of oxidation (°C)	600	650	900–1000	1090
Ductility (%) at RT	10–20	2–7	1–3	3–5
Ductility (%) at high T	High	10–20	10–90	10–20
Structure	hcp/bcc	DO19	L1 ₀	fcc/L1 ₂

/M.-T. Perez-Prado, M.E. Kissner, Creep of Intermetallics, in: Fundamentals of Creep in Metals and Alloys, Elsevier 2015/

Titanium aluminides


Applications

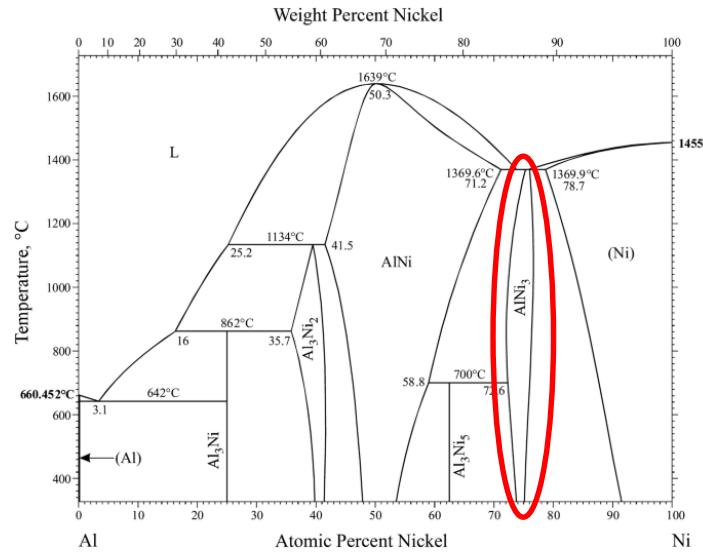
- After several decades of research and development, parts fabricated from TiAl alloys have recently been introduced on the market
- Fields of application are turbocharger parts, aeroengine parts

Selected state-of-the art TiAl alloys

Alloy name	Nominal composition [at.-%]	Company / Institute
GE48-2-2	Ti-48Al-2Cr-2Nb	General Electric
γ -MET	Ti-46.5Al-4(Nb, Cr, Ta, B)	Plansee
47XD	Ti-47Al-2Mn-2Nb-0.8TiB ₂	Martin Marietta
γ -TAB	Ti-47Al-4(Nb, Cr, Mn, Si, B)	GKSS Research Center
ABB Alloy	Ti-45Al-2W-0.5Si	ABB
TNB-V5	Ti-45Al-5Nb-0.2C-0.2B	GKSS Research Center
TNM-B1	Ti-43Al-4Nb-1Mo-0.1B	GKSS Research Center

Turbo charger parts

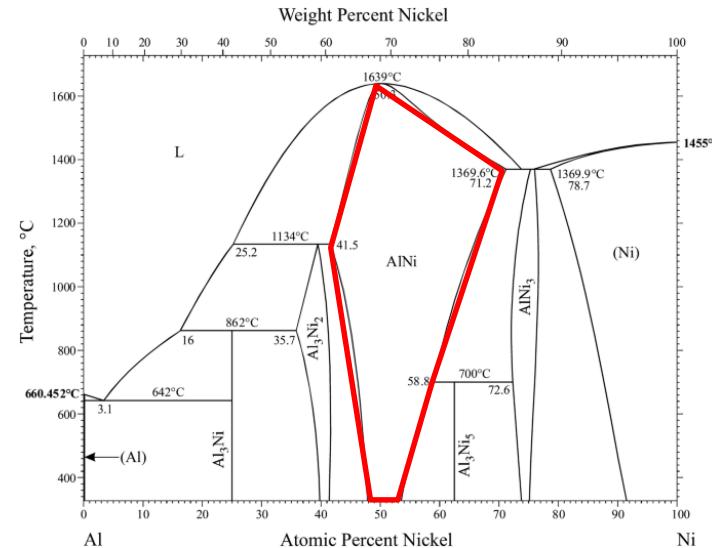
Vanес in aeroengines



Nickel aluminides

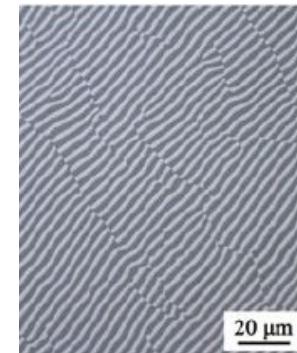
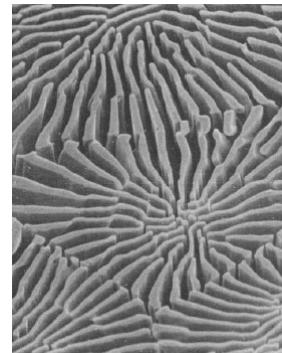
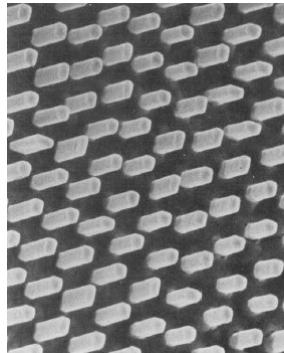
Properties of Ni_3Al

- Ni_3Al polycrystals: Brittle due to soft grain boundaries; boron addition can strengthen boundaries.
- Single crystals: Ductile with dislocation glide on $\{111\}/<110>$ slip systems (von Mises criterion met).
- Oxidation: 13 wt% Al insufficient for dense Al_2O_3 layer at HT; forms NiO with some Al_2O_3 .
- Properties: γ - Ni_3Al lacks significant advantages over Ni alloys in physical, mechanical, or corrosion resistance.


IMC	Crystal structure	T_{oc} [°C]	T_{m} [°C]	ρ [g/cm ³]	E [GPa]
Ni_3Al	L1 ₂ (ordered fcc)	1390	1390	7.5	179

Nickel aluminides

Properties of NiAl




- High oxidation resistance due to ~30 wt% Al.
- 25% lower thermal expansion and ~5x higher thermal conductivity than Ni superalloys.
- Brittle up to ~650°C (~0.3-0.5 T_s) due to high Peierls stress and limited slip systems, resulting in low fracture toughness and high notch sensitivity.
- Limited creep resistance from open B2 lattice structure with high diffusivity.
- Ductile-to-brittle transition in polycrystals affected by composition, grain size, and processing.

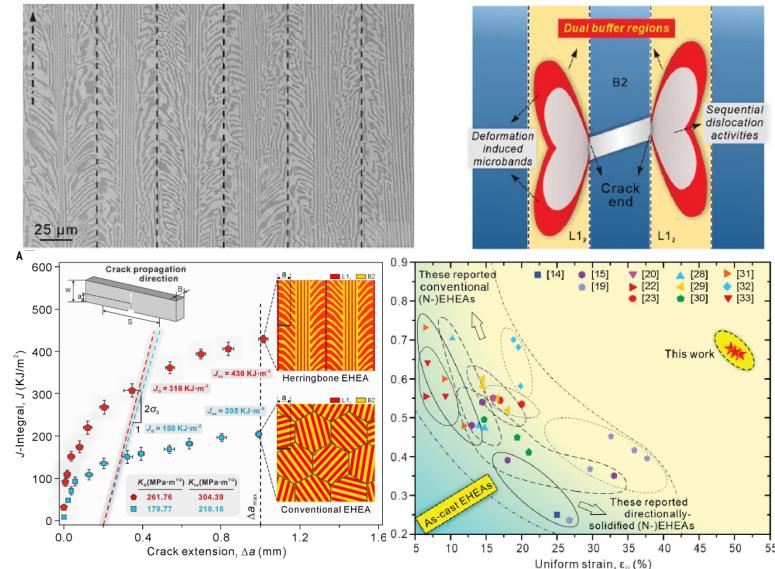
IMC	Crystal structure	T _{oc} [°C]	T _m [°C]	ρ [g/cm ³]	E [GPa]
NiAl	B2 (ordered fcc)	1640	1640	5.86	194

Alloying strategies for improving mechanical properties of NiAl

- Improving NiAl toughness & strength: achieved by adding a ductile, creep-resistant refractory phase
- Eutectic strategy: NiAl forms eutectics with bcc elements (e.g., Cr, Mo, W, Ta) during solidification
- Promising alloys: directionally solidified NiAl-Cr/Mo with aligned Cr-18Mo lamellae in a NiAl matrix offers fine, creep-resistant structure

left: NiAl-Cr showing aligned Cr rods in deep-etched NiAl matrix

center: NiAl-Cr(Mo), showing Cr-Mo lamellae in deep-etched NiAl matrix


right: unetched transverse view showing aligned Cr(Mo) lamellae in NiAl matrix

/H.E. Cline et al. Metall. Trans. 2 (1971) 189–194/
/D.R. Johnson et al. Intermetallics. 3 (1995) 99–113/

Nickel aluminides

Alloying strategies for improving mechanical properties of NiAl

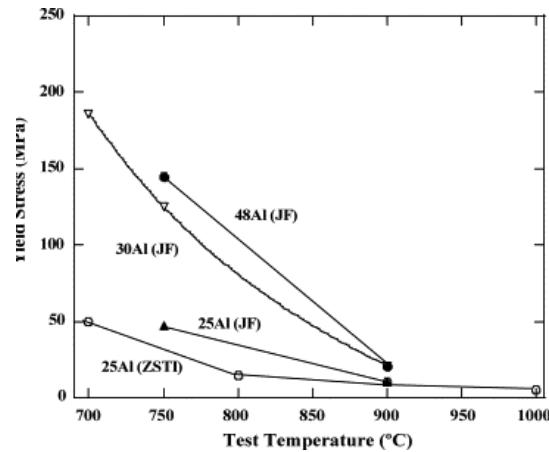
- Ni-20Co-20Fe-19Al eutectic alloy:
 - recently shown to be crack-tolerant and highly ductile in tension.
- Contains Al-rich B2 (Ni-17Co-17Fe-27Al) and Al-lean L1₂ (Ni-24Co-27Fe-11Al) phases in lamellar structure.
- Herringbone pattern guides microcrack nucleation in brittle B2 phase, while ductile L1₂ phase buffers and prevents crack propagation, delaying failure

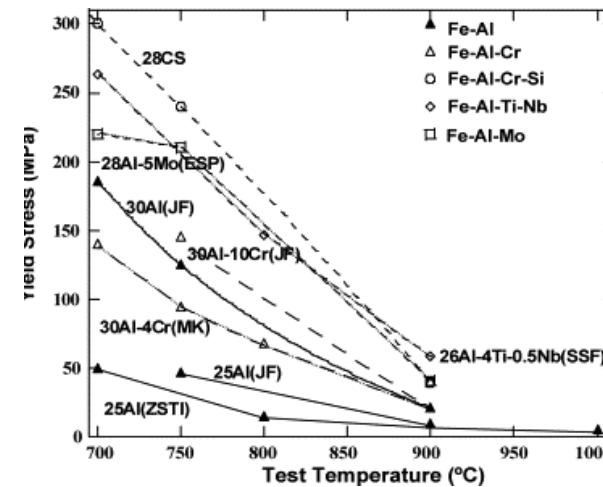


/P.Shi et al., Science. 373 (2021) 912–918/

Iron aluminides

- Studied as low-cost, low-density alternatives to high-alloy steels.
- Offer good wear resistance, oxidation, and corrosion resistance.

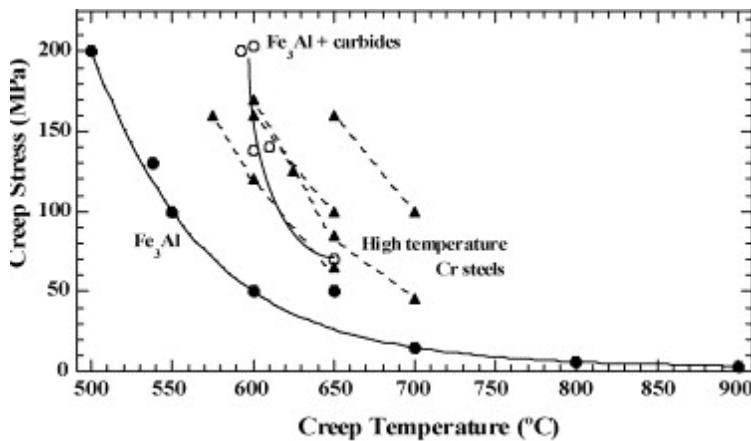

IMC	Crystal structure	T_{oc} [°C]	T_m [°C]	ρ [g/cm ³]	E [GPa]
Fe ₃ Al	D0 ₃ (ordered bcc)	540		6.72	141
	B2 (ordered bcc)	760	1540		
FeAl	B2 (ordered bcc)	1250	1250	5.56	261


Iron aluminides

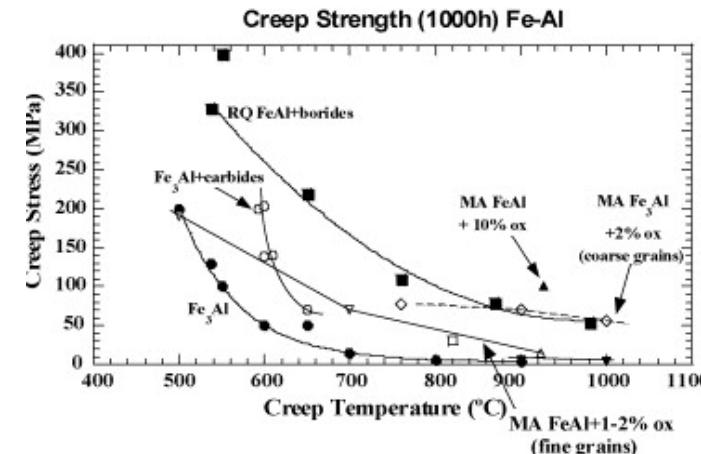
Mechanical performance

- Additional alloying elements can increase the HT strength

Comparison of flow stress at high temperature in binary Fe-Al alloys with a range of Al contents between 25 and 48%.


Comparison of flow stresses of high temperature binary Fe-Al alloys and some ternary Fe-Al-X solution alloys.

/D.G. Morris et al. Acta Mater, 52(9) (2004) 2827-2836/


Iron aluminides

Creep behavior

- The creep resistance of Fe_3Al and FeAl alloys is in general inferior to that of high alloyed steels
- Particle strengthening with carbides, borides or oxides possible

1000 h creep strength of binary Fe_3Al , Fe_3Al with carbide additions, and advanced high-temperature steels.

1000 h creep strength of binary Fe_3Al , and various Fe_3Al or FeAl alloys strengthened with carbides, borides or oxides.

/D.G. Morris et al. Acta Mater, 52(9) (2004) 2827-2836/

Learning objectives

- Hume-Rothery rules for substitutional/interstitial phases
- The different classes of IM phases and their main characteristics
- Structural intermetallics
 - The advantages/disadvantages of IMCs
 - Fundamental properties of the alloys from the Ti-Al, Ni-Al and Fe-Al systems
 - Potential fields of application